首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16142篇
  免费   1678篇
  国内免费   1416篇
电工技术   3667篇
技术理论   2篇
综合类   1443篇
化学工业   1279篇
金属工艺   848篇
机械仪表   697篇
建筑科学   766篇
矿业工程   419篇
能源动力   995篇
轻工业   294篇
水利工程   4967篇
石油天然气   377篇
武器工业   88篇
无线电   778篇
一般工业技术   935篇
冶金工业   602篇
原子能技术   597篇
自动化技术   482篇
  2024年   34篇
  2023年   200篇
  2022年   442篇
  2021年   464篇
  2020年   497篇
  2019年   492篇
  2018年   489篇
  2017年   627篇
  2016年   607篇
  2015年   676篇
  2014年   1023篇
  2013年   903篇
  2012年   1208篇
  2011年   1231篇
  2010年   870篇
  2009年   897篇
  2008年   958篇
  2007年   1130篇
  2006年   1031篇
  2005年   887篇
  2004年   788篇
  2003年   646篇
  2002年   563篇
  2001年   512篇
  2000年   396篇
  1999年   358篇
  1998年   249篇
  1997年   226篇
  1996年   172篇
  1995年   159篇
  1994年   126篇
  1993年   95篇
  1992年   70篇
  1991年   56篇
  1990年   33篇
  1989年   32篇
  1988年   20篇
  1987年   18篇
  1986年   9篇
  1985年   7篇
  1984年   8篇
  1983年   6篇
  1982年   8篇
  1981年   6篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1964年   1篇
  1954年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
介绍了某钼冶炼厂废水处理系统的改造实践情况。通过采用AO脱氮技术的地埋式一体化装置代替原有的两级生化曝气池等改造,处理后的生活污水出水COD在50 mg/L以下,氨氮质量浓度在15 mg/L以下,可全部回用于厂区作为绿化及道路清扫等用水;通过增加两级曝气池、pH调节池和溢流水槽对工业废水进行处理后,生产废水出水清澈透明,无杂色,满足GB 8978—1996《污水综合排放标准》一级标准要求,可达标排放或回用,实现了废水的循环利用和零排放,节约了水资源。  相似文献   
62.
倪辉  杨自力  钟珂  陶睿杨  谷雨倩 《化工学报》2020,71(3):1035-1044
基于质量守恒、能量守恒定律,建立了内热型超声雾化溶液再生系统(IH-UARS)的再生性能预测模型并进行了充分的实验验证,通过研究不同内热量下IH-UARS的再生性能及其变化规律,寻求系统所需的最佳内热量并明确其可能的影响因素。结果表明:IH-UARS系统存在最优的内热量范围,使其再生系统性能最佳;所需最优内热量随着再生溶液流量增大呈显著的对数增长,但受空气流量的影响较弱;在该研究中的标准工况下,IH-UARS所需最优内热量约为275~350 W。此外研究发现:内热量的增长有益于促进初始浓度较高的溶液进一步浓缩再生,如当IH-UARS中内热量增至800 W时,其初始浓度为36%的溶液比24%的溶液浓度增量指标改善幅度高37%。研究所得结果可对提高溶液再生性能及经济性提供积极参考。  相似文献   
63.
Methane decomposition into hydrogen and carbon is analyzed in a plasma reactor, with a rotating arc and different cross-sectional areas for the passing gas. This novel setup helps the arc discharge to sweep a larger fraction of the reactant which could cause a better interaction of methane molecules with plasma phase causing higher conversions. The effects of angular velocity of arc discharge, feed flow rate, and cross-sectional area for the passing gas were investigated on the reactor performance. Methane conversion increased significantly by changing the arc mode from stationary to rotating. Increasing the cross-sectional area for the passing gas causes conversion drop for stationary arc whereas a slight increase in conversion is observed for rotating arc mode. Hydrogen production rate of 100 ml/min with an energy yield of 26.8 g/kWh achieved at a methane flow rate of 150 ml/min. The residence time is estimated to be 0.2–3.9 s in the range of the present study, which is a much longer period compared to the plasma process time. Therefore, it is suggested that the mass transfer rate between the gas and plasma phase is the controlling factor for methane conversion. In this respect, an apparent reaction rate constant is derived by considering methane conversion as that fraction of gas, which is exposed to the active area of the plasma arc column.  相似文献   
64.
Atmospheric pressure plasma technology is gaining increasing importance because it is a simple and tunable synthesis process for the production of metallic nanoparticles. In addition to the development of the power supply, improving the reactor is also one of the main strategies to enhance the utility. In this study, a simple reactor for the gas–liquid discharge plasma induced by argon gas was applied to synthesize silver nanoparticles from silver nitrate (AgNO3) in solution. An AC power supply with a peak voltage of 3.5 kV was used. The frequency and on-time were set to 50 kHz and 2.5 μs, respectively. The oscilloscope showed that the rising time was approximately 2 μs. The ethanol was used as the source for the reactive reducing agent. No more additional components existed in the solution during the discharge and neither of the electrodes was in contact with the treated solution. The temperature increased by 10 °C within 1min without a cooling system. Carbon was the main impurity and was expected to be produced from the decomposition of the organics under the plasma. The elevated temperature decreased the organic by-products by evaporation and could also decrease the production of carbon. Transmission electron microscopy showed that the spherical silver nanoparticles with a size of approximately 10 nm were synthesized with a crystal structure and that a low concentration of ethanol prefers the production of the mono-dispersed colloid.  相似文献   
65.
Plasma in the discharge channel of a pulsed plasma thruster (PPT) with flared electrodes is simulated by a self-developed two-dimensional code. The fully particle-in-cell method with Monte Carlo collision is employed to model the particle movement and collisions and investigate the plasma properties and acceleration process. Temporal and spatial variations of the electron density distribution and the ion velocity between electrodes are calculated and analyzed in detail. The computational results of the electron number density, which is in the order of 1023 m−3, show good agreements with experimental results of a PPT named ADD SIMP-LEX. The ion velocity distributions along the center line of the channel lead to a comprehensive understanding of ions accelerated by electromagnetic field. The electron distributions of PPT with discharge voltages varying from 1300 to 2000 V are compared. The diffusion of electrons presents strong dependency on discharge voltage and implies higher degree of ionization for higher voltage.  相似文献   
66.
《Advanced Powder Technology》2020,31(4):1720-1727
A new concept of powder atomization based on the venturi phenomenon is presented in the current work. In the proposed method, the working gas speeds-up while flowing into the venturi nozzle. Under the low static pressure developing at the narrow part of the venturi, liquid metal is sucked and mixed perfectly with the gas. By controlling the operating parameters, metal powder of different sizes and shapes can be produced. Carbon dioxide and pure aluminum were mixed in the nozzle and the effect of different operating gas pressures on the produced particle size and shape were thoroughly investigated. Most of the particles were found to average to almost 150 μm, however, even sub-micron aluminum particles were produced at low mass fractions. With the increase of the gas pressure from 0.5 bar to 4 bar, finer aluminum particles are produced. One of the most attractive features of the proposed method is the low gas pressure required to cause melt atomization, which in certain cases may be up to 30 times lower compared to current industrial atomization methods.  相似文献   
67.
《Advanced Powder Technology》2020,31(9):4119-4128
Arc discharge synthesis has industrial relevance due to its low cost and scale-up potential. The production of titanium nitride nanoparticles was achieved by direct current arc discharge in an atmospheric-pressured ambient composed of N2 and Ar. We systematically investigated the effect of the synthesis parameters, including quench gas velocity, quench gas composition, and applied arc current, on the particle quality, yield, and size. It is found that increasing quench gas velocity enables to produce particles with a primary size of 10–15 nm, while titanium nitride particles of 20–50 nm are produced at low quench gas velocity based on scanning electron microscope (SEM) analysis. X-ray diffraction (XRD) results indicated that titanium nitride particles produced at various nitrogen compositions are almost stoichiometric, while the crystallite size increases almost 20 nm when increasing nitrogen contents in the quench gas. Quench gas composition also has a significant impact on the arc voltage as well as particle production rate. When increasing the nitrogen concentration from 20% to 100%, the production rate can be enhanced by a factor of three. Besides, raising the applied arc current from 12 A to 50 A leads to a yield enhancement of factor 10. According to the Brunauer-Emmett-Teller (BET) measurement, the increase of applied arc current has a limited impact on primary particle size. The enhancement in particle production rate is mainly reflected by the larger agglomerate sizes and agglomerate number concentration. Additionally, based on experimental observations and previous studies, a mechanism is presented to explain the growth of deposits on the cathode tip.  相似文献   
68.
The quality of the machined surface resulted from the electrical discharge machining (EDM) environment is not efficient according to the previous studies. One of the significant problems is the impedance of dielectric fluid, where it is contributing to focusing the plasma channel in a limited area. Hence, this behavior leads to appearing deep craters on the machined zone. The researchers have attempted to enhance the average of surface roughness by employing powder particles or surfactant as the additive materials in the dielectric fluid. Unfortunately, these studies did not present a comparison between these additive materials in this environment. Therefore, the present study aims to compare the performance of the average of surface roughness (Ra) for AISI D2 steel by utilizing Nano chromium powder (NCP) and Span-20. The present work has proved that the behavior of the average of surface roughness for this steel is dropping at the maximum level of Nano chromium powder concentration and pulse duration as compared to the behavior with the Span-20. Moreover, the best roughness was produced by this steel with Nano chromium powder at 2 g/L and 20 μs for this powder and the pulse duration.  相似文献   
69.
The La-Mg-Ni-Co-Al-based AB2-type La0.8–xCe0.2YxMgNi3.4Co0.4Al0.1 (x=0, 0.05, 0.1, 0.15, 0.2) alloys were prepared via melt spinning. The analyses of the X-ray diffraction (XRD) and scanning electron microscopy (SEM) proved that the experimental alloys contain the main phase LaMgNi4 and the second phase LaNi5. Increasing Y content and spinning rate lead to grain refinement and obvious change of the phase abundance without changing phase composition. Y substitution for La and melt spinning make the life-span of the alloys improved remarkably, which is attributed to the improvement of anti-oxidation, anti-pulverization and anti-corrosion abilities. In addition, the discharge capacity visibly decreases with increasing the Y content, while it firstly increases and then decreases with increasing spinning rate. The electrochemical kinetics increases to the optimum performance and then reduces with increasing spinning rate. Moreover, all the alloys achieve to the highest discharge capacities just at the initial cycle without activation.  相似文献   
70.
根据高拱坝泄流结构自身的工作特点,为准确辨识环境激励下的结构模态参数特征,提出了一种基于改进的HHT-RDT算法的高拱坝泄流结构工作模态识别方法。以某高拱坝原型振动响应测试资料为基础,利用改进的小波阈值-EMD算法对原始信号进行降噪预处理,滤除干扰噪声的同时保留有效特征信息;采用HHT-RDT算法识别高拱坝泄流结构的工作模态参数,运用带通滤波对振动响应信号的EMD过程进行控制得到结构的各阶模态分量,利用RDT法提取各阶模态分量的自由衰减信息,识别出高拱坝泄流结构系统的固有频率及阻尼比。工程实例表明,该方法避免了复杂系统定阶过程,有效提高结构振动响应工作模态识别精度,为辨识高拱坝泄流结构的工作模态参数提供捷径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号